

Elgiloy Specialty Metals – Wire Products

Inconel® alloy 625

UNS N06625 W. Nr 2.4856

Applicable Specifications

Wire & Bar AMS 5666, AMS 5837, ASTM B446, AWS A5.14, NACE MR0175/ISO 15156-3, NACE MR0103/ISO 17945

Description: Inconel® 625 is a Nickel-Chromium-Molybdenum-Columbium (Niobium) alloy with excellent oxidation resistance, corrosion resistance, and strength at high temperatures. Age-hardening treatments are not required to obtain the high strength properties of Inconel® 625 due to the solid solution effects of molybdenum and columbium on the nickelchromium matrix. Inconel® 625 is resistant to chloride-ion stress-corrosion cracking, pitting, and stress-corrosion cracking making it suitable for seawater applications. Inconel® 625 can operate from cryogenic temperatures up to 1800°F (980°C). Applications include: Springs, seals, nuclear water reactors, and aircraft ducting systems.

Industries supplied include: Marine, Chemical Processing, and Aerospace.

Nominal Composition											
	Ni	Cr	Мо	Nb	Fe	Co	Si	Mn	Al	Ti	С
min	58	20	8	3.15							
max		23	10	4.15	5	1.0	0.5	0.5	0.4	0.4	0.10

Physical Properties

	At 70°F	At 20°C	
Density	0.305 lb/in ³	8.44 g/cm ³	
Modulus of Elasticity (E)	30.1 x 10 ³ ksi	208 GPa	
Modulus of Rigidity (G)	11.8 x 10 ³ ksi	81.2 GPa	
Coefficient of Expansion	7.4 microinches/in°F (70-600°F)	13.3 x μm/m-°C (20-300°C)	
Electrical Resistivity	50.8 μ ohm.in	129 μ ohm.cm	
Thermal Conductivity	68 Btu-in./ft. ² hr°F	9.8 W/m-K	

Typical Mechanical Properties

Condition	Heat Treatment	Tensile Strength	Suggested Operating Conditions		
Annealed	1925-2050°F (1050-1120°C)	120 – 150 ksi (830-1100 MPa)	-300°F to 1800°F (-184°C to 980°C)		
Spring Temper		200 – 240 ksi (1380-1655 MPa)	-300°F to 700°F (-184°C to 370°C)		

INCONEL® is a registered trademark of the Special Metals Corporation group of companies.

Limitation of Liability and Disclaimer of Warranty:

- The content in these data sheets is provided primarily by third-party melting mills and is provided for reference only. It is not intended for engineering or design.
- Applications may be discussed, however, Elgilov Specialty Metals, a Division of Combined Metals of Chicago L.L.C., does not recommend or endorse any material for any particular end use or application.
- The data included in this data sheet are typical values and may vary.
- Elgilov Specialty Metals, a Division of Combined Metals of Chicago L.L.C., makes no representations or warranties, express or implied, as to the accuracy, completeness, condition, suitability, performance, fitness for a particular purpose, or merchantability of any information contained in any data sheet.

In no event will Elgiloy Specialty Metals, a Division of Combined Metals of Chicago L.L.C., be liable for any damages whatsoever arising from the use of the information included in the data sheets.

For further information: Email: wireinquiries@elgiloy.com Phone: 1-847-695-1900

Elgiloy Specialty Metals - Wire Products 356 North Cross Street Sycamore, IL 60178 USA

www.elgiloy.com

Rev Date: 6/2/2021